Graph-theoretic Techniques for Web Content Mining

Graph-theoretic Techniques for Web Content Mining

eBook - 2005
Rate this:
This book describes exciting new opportunities for utilizing robust graph representations of data with common machine learning algorithms. Graphs can model additional information which is often not present in commonly used data representations, such as vectors. Through the use of graph distance -- a relatively new approach for determining graph similarity -- the authors show how well-known algorithms, such as k-means clustering and k-nearest neighbors classification, can be easily extended to work with graphs instead of vectors. This allows for the utilization of additional information found in graph representations, while at the same time employing well-known, proven algorithms.To demonstrate and investigate these novel techniques, the authors have selected the domain of web content mining, which involves the clustering and classification of web documents based on their textual substance. Several methods of representing web document content by graphs are introduced; an interesting feature of these representations is that they allow for a polynomial time distance computation, something which is typically an NP-complete problem when using graphs. Experimental results are reported for both clustering and classification in three web document collections using a variety of graph representations, distance measures, and algorithm parameters.In addition, this book describes several other related topics, many of which provide excellent starting points for researchers and students interested in exploring this new area of machine learning further. These topics include creating graph-based multiple classifier ensembles through random node selection and visualization of graph-based data using multidimensional scaling.
Publisher: Singapore ; Hackensack, N.J. : World Scientific, c2005 (Norwood, Mass. : Books24x7.com [generator])
ISBN: 9789812563392
9812563393
Additional Contributors: Schenker, Adam
Books24x7, Inc

Opinion

From the critics


Community Activity

Comment

Add a Comment

There are no comments for this title yet.

Age Suitability

Add Age Suitability

There are no age suitabilities for this title yet.

Summary

Add a Summary

There are no summaries for this title yet.

Notices

Add Notices

There are no notices for this title yet.

Quotes

Add a Quote

There are no quotes for this title yet.

Explore Further

Subject Headings

  Loading...

Find it at VPL

  Loading...
[]
[]
To Top